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ABSTRACT

Prediction markets are incentive-based mechanisms for eliciting

and combining the diffused, private beliefs of traders about a future

uncertain event such as a political election. Typically prediction

markets maintain point estimates of forecast variables; however,

exponential family prediction markets define a class of cost function-
based market-making algorithms that maintain a complete, col-

lective belief distribution over the underlying generative process

of the event of interest (e.g. the probability density of the win-

ner’s vote-share). We focus on concretizing a special case of this

abstract framework, the algorithmic market maker being based on

the beta distribution. We set up a multi-agent simulation of the

market ecosystem to experimentally investigate the interaction of

this microstructure with a heterogeneous trading population. We

design a Bayesian trader model with explicit characterization of

this heterogeneity with respect to two independent attributes: how

rich a trader’s private information is and how much wealth they

initially have at their disposal. We gauge the interplay of the above

attributes with the arrival order of traders, particularly in terms of

the net profit accrued by different trader types. Our results strongly

suggest that early arrival can dominate both wealth and informa-

tiveness as a factor in determining trader compensation under a

variety of experimental conditions.
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1 INTRODUCTION

High-quality forecasts of uncertain events have always been neces-

sary for decision-making and planning purposes in many spheres

of human life. One way to produce such forecasts is to solicit and

combine personal beliefs (or signals) about the event of interest

from a potentially diverse population by polls, surveys, etc.; but

this approach can be messy and prone to misinterpretation and ma-

nipulation. On the other hand, financial markets, where commodity

prices emerge from the collective activity of a diverse trading popu-

lation, have long been known to double as aggregators of similarly

diffused information — their advantage lies in their built-in finan-

cial incentives and timely responses. Prediction markets [3] such as

PredictIt (https://www.predictit.org/) and Iowa Electronic Markets

(https://iemweb.biz.uiowa.edu/) represent a particular type of finan-

cial market that are designed with the express purpose of eliciting

the personal beliefs of traders about an uncertain future event and

reflecting these beliefs in the observable market “state”. Such a

market offers trade in a carefully designed bundle of contracts, or

securities, whose monetary value at market termination is tied to

the realization of the forecast event. For instance, a market designed

to predict the outcome of the U.S. presidential election may issue a

single security that is finally worth $1 if a Democrat wins the race

and $0 otherwise; the price of this security over the lifetime of the

market can be interpreted as an aggregated probability that a Demo-

crat will win the race. There is considerable empirical evidence of

such markets being at least as effective as alternatives such as polls

[4, 10, 17, 30]. There has also been a long line of theoretical research

on prediction markets (see, e.g., [8, 16, 25]), especially after Robin

Hanson introduced market scoring rules (MSR), a family of algo-

rithms that act as automated market makers for prediction markets

[18, 19]. An MSR under mild assumptions can be implemented in

terms of a convenient and interpretabe convex cost function which

specifies the cost of buying/proceeds from selling shares in the

market securities, given the total number of shares sold thus far

[1, 7, 8]. This single function fully determines themarket microstruc-
ture, hence plays a key role in traders’ decisions and the market’s

aggregation characteristics (in particular, the price function, i.e. the
first-order derivative of the cost function, represents the market’s

probabilistic belief over the outcome space).

We seek to contribute to ongoing research on both the design of

prediction markets for particular forecast objectives as well as the

evaluation of their performance in the presence of various trader

models. Let us explain using the prediction of a random binary

event (e.g. a two-candidate presidential election as above) as a

running example. The uncertainty in the realized outcome (winner)

can then be modeled as a Bernoulli distribution with an unknown

single parameter 𝑝 ∈ [0, 1] (the probability of a Democrat winning).

https://doi.org/10.1145/3490354.3494406
https://doi.org/10.1145/3490354.3494406
https://doi.org/10.1145/3490354.3494406
https://www.predictit.org/
https://iemweb.biz.uiowa.edu/
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To maintain a point estimate of this 𝑝 , one can use the classic

Logarithmic Market Scoring Rule (LMSR), a member of the MSR

family and the de facto standard algorithm for real-world prediction

markets. An LMSR-based prediction market is incentive-compatible

for myopic, risk-neutral traders with no budget constraints [19]; i.e.,

the trade that maximizes such a trader’s expected profit from the

market also drives the market price to what this trader believes 𝑝

to be, based on her private information, A plethora of work [21, 24,

25, 27] has established the impressive convergence or aggregation
properties of prediction markets (MSRs in particular), i.e. how well

the market state (e.g. price) tracks the belief that would be obtained

by combining the private information of all participating traders

under various assumptions on trader behavior.

But uncertainty about the forecast variable(s) can exist on multi-

ple levels. In our running example, not only is the election winner

uncertain until market closing but so is the underlying process

represented by the Bernoulli parameter 𝑝 . Is it feasible to design a

market that elicits and expresses uncertainty at such “deeper” levels

while retaining (some of the) desirable properties of MSRs? Aber-

nethy et al. [1] laid the theoretical foundation for a family of market

designs that can capture uncertainty when it is expressed in terms

of a probability distribution belonging to the well-known exponen-
tial family [29]. We can model our unknown Bernoulli parameter

as a continuous random variable with support on [0, 1] following
a beta distribution which belongs to the exponential family and is

fully described by two independent parameters (see Section 2.1 for

details); following Abernethy et al. [1], we can hence implement

a specific exponential family market where the the securities cor-

respond to the above defining parameters of a beta distribution.

Each trader effectively “reports” a parametric encoding of her belief
distribution over 𝑝 rather than a point probability 𝑝 , and is com-

pensated based on her report as well as the revealed “true” value of

𝑝 (e.g. the vote-share of the winner could serve as a proxy for 𝑝).

What do the financial (e.g. trader compensation) and informational

(e.g. belief aggregation) characteristics of the ecosystem induced

by this more complicated market design look like? These questions

call for a careful consideration of the attributes and circumstances

of traders, especially those that were not taken into account for

designing the market.

In this work, we model traders as Bayesian entities that each
privately observe a small number of Bernoulli trials with the same

parameter 𝑝 that determines the “true” outcome; they then compute

their posterior belief distribution based on their private observa-

tions and the current market state, and trade so as to maximize

their expected net compensation with respect to this belief. The

size of this private sample can be viewed as a measure of the quality

of the trader’s information source or, from the perspective of the

market, the reliability of her report. We call this property the infor-
mativeness of a trader. Intuitively, it would be unfair if a trader of

lower informativeness sustained a higher profit in expectation from

the market than one of higher informativeness. Moreover, some or

all traders may have a budget constraint that limits their trading

ability, and hence their effective informativeness as perceived by

the market. These trader attributes may interact in complex and

non-intuitive ways with the microstructure: in cost function-based

market making, the traders arrive sequentially and directly inter-

act with the algorithmic market maker only (a pure-dealer model),

their profit being decided by the marginal value — rather than the

absolute value — of the information they inject into the market,

relative to the current market state induced by all previous trades.

If a highly informative trader shows up after a large amount of

information has already been incorporated into the market, can

they end up booking a smaller profit than a less informative trader

arriving earlier? How serious is this sequence effect? This is par-
ticularly important when traders cannot fully control their arrival

time owing to market regulations or circumstances extraneous to

the market. For instance, the market may employ tie-breaking to

resolve simultaneous arrival or a trader may be willing or able to

trade only after her source delivers the private observations on

which she bases her belief and hence her trading decision.

1.1 Our Contributions

Our broad motivation is to develop a detailed understanding of

price formation and trader compensation for an exponential family
prediction market with a heterogeneous trader population.
•We design the beta-Bernoulli prediction market ecosystem where a

central automatedmarketmakermaintains and updates a beta belief

distribution about the parameter of a Bernoulli event (Section 3.1);

we adopt a simulation-based approach to systematically investigate

the properties of the market maker in the presence of trading agents

described below. To our knowledge, this is the first experimental

assessment of any exponential family market.

•We formulate an agent-based model of trading under Bayesian

belief updates (Section 3.2): salient features of an agent include

her informativeness, measured by the number of privately observed

draws from the true Bernoulli distribution, and her budget, i.e. an
upper bound on the debt (negative wealth) she can be in when the

market closes.

•We conduct and report two sets of experiments: in the first, traders

with unlimited budget are divided into two types based on their

asymmetric informativeness; in the other, traders of the same in-

formativeness are divided into two types depending on whether

or not they are budget-limited. In each set, we construct different

trader sequences based on types (e.g. randomized, interleaved, etc.).

We measure separately the interaction of these two features with a

trader’s arrival time in influencing market convergence and trader

compensation. In the second set, we simulate several rounds of fore-
casting, each having its own market and ending in the revelation of

a different Bernoulli event but involving the same agents; we track

the evolution of traders’ budgets over these rounds.

A major insight from our experimental results is that the arrival

time of a trader can outweigh both informativeness and budget in

terms of effect on trader compensation (or trading power). This is

not a counter-intuitive finding but the value of our study lies in the

in systematically measuring this effect and identifying conditions

under which it is prominent, laying the groundwork for further

experimental (and theoretical) analysis of different exponential

family prediction markets.

1.2 Further Related Work

Our work is based on the exponential family market framework

due to Abernethy et al. [1] (see [15] for follow-up work on elicita-

tion for exponential family distributions in a non-market context).
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This paper does provide some analytical results on convergence for

some trader models but traders are assumed to be homogeneous

and with infinite budgets. Unlike papers on convergence / aggrega-

tion in market equilibrium that abstract away from microstructure

([5, 26, 28] and references therein), we study convergence under

a cost function-based microstructure; moreover, our market is de-

signed to capture uncertainty at a finer granularity compared to

predecessors in this vein [21, 24, 27]. There has been both the-

oretical [11] and empirical [27] work on budget restrictions for

traders in cost function-based trading but we operationalize bud-

gets differently (Section 3.2.2). In our second set of experiments,

we consider a sequence of forecast rounds and study the growth

of budget over these rounds, reminiscent of Beygelzimer et al. [5];

but we admit a microstructure and distinct characterizations of

budget and informativeness. Our work also differs from the strand

on information structure of potentially manipulative traders, i.e. cor-

relation among traders’ private signals, and its impact on market

equilibria ([2, 9, 22] and references therein) — we focus on a quan-

tification of a myopic trader’s individual informativeness. Recent

work on prediction markets over interval securities [14] allows

traders to express their confidence by trading on an interval rather

than a point estimate; however, our market is set up to elicit the

entire (parametrized) posterior distribution, given that it belongs

to a well-defined family. Some other recent papers on prediction

markets that deserve mention are: Dudík et al. [13] who look at

tradeoffs among forecast error components in prediction markets

rather than the interplay of trader attributes; Laskey et al. [23] who

deal with combinatorial prediction markets that elicit fine-grained

information of a fundamentally different nature.

2 PRELIMINARIES

2.1 The Exponential Family of Distributions

The exponential family [29] is a set of distributions whose proba-

bility density function over a 𝑑-dimensional real-valued random

variable 𝑥 ∈ R𝑑 can be expressed in the form

𝑝 (𝑥 |𝜂) = exp{𝜂 · 𝜙 (𝑥) −𝐶 (𝜂)}. (1)

Here 𝜂 ∈ R𝑑 is the vector of natural parameters of the distribution,
𝜙 (𝑥) ∈ R𝑑 is that of sufficient statistics, and 𝐶 (𝜂) is called the log-
partition function. Exponential family distributions are the solution

to the constrained optimization problem of finding the maximum

entropy distribution with a given value of expected sufficient statis-

tics. Many commonly used distributions like the Gaussian, Poisson,

and importantly for this paper, beta and Bernoulli distributions, are

all members of this family.

The Bernoulli distribution is defined over a binary outcome space

𝑋 ∈ {0, 1} and is fully described by a single parameter 𝑝 = Pr[𝑋 =

1] = E[𝑋 ] ∈ [0, 1]. In situations where this parameter itself is

unknown and we wish to maintain and update our uncertainty

about its value, we can model this uncertainty as a distribution

over the parameter space [0, 1]. A natural choice in this case is the

beta distribution which is the conjugate prior of the Bernoulli data
distribution [12] and is itself a member of the exponential family.

The probability density function of the beta distribution is specified

in terms of two independent parameters 𝛼, 𝛽 ∈ R+:

Beta(𝑝;𝛼, 𝛽) = 𝑝𝛼−1 (1 − 𝑝)𝛽−1
𝐵(𝛼, 𝛽) , 𝑝 ∈ [0, 1],

where 𝐵(𝛼, 𝛽) =
Γ (𝛼)Γ (𝛽)
Γ (𝛼+𝛽) ; Γ(·) denotes the well-known gamma

function [20]. The expectation of the distribution is given by E[𝑝] =
𝛼

𝛼+𝛽 . For 𝛼 = 𝛽 = 1, the distribution is identical to the uniform

distribution over the interval [0, 1]. Suppose a Bernoulli random
variable is parameterized by 𝑝 ∈ [0, 1]. Given a prior belief distribu-

tion Beta(𝑝;𝛼, 𝛽) over 𝑝 and𝑚 observations {𝑥1, . . . , 𝑥𝑚} drawn
from the true Bernoulli distribution, the Bayesian posterior is also

a beta distribution with updated parameter values

𝛼 (posterior) = 𝛼 +
𝑚∑
𝑖=1

𝑥𝑖 ; 𝛽 (posterior) = 𝛽 +𝑚 −
𝑚∑
𝑖=1

𝑥𝑖 . (2)

2.2 Exponential Family Markets

Exponential family markets [1] use the structure of an exponential

family distribution to construct a cost function-based prediction

market with interesting theoretical elicitation and aggregation prop-

erties. Classical LMSR is a special case of this market where the

cost function is based on the log-partition function of the Bernoulli

probability mass function.

Let 𝑥 ∈ R𝑑 be a random variable of interest. A market maker

that intends to elicit and aggregate beliefs of the expectation of a

vector of statistics 𝜙 (𝑥), chooses an appropriate maximum-entropy

distribution based on these statistics — let this be the exponential

family distribution 𝑝 (𝑥 |𝜂) as defined in Equation (1) with sufficient

statistics 𝜙 (𝑥). The market maker defines the microstructure based

on this distribution, including: securities (the commodities traded in

the market), a cost function (that determines the cost of purchasing

these securities) and a payoff function (i.e. cash per share that each

security liquidates to at market termination). Corresponding to each

dimension of the sufficient statistics vector, the market maker issues

a security or contract that pays off the value of the corresponding

statistic 𝜙 (·) for the realized outcome 𝑥∗. In other words, if a trader

holds 𝛿 ∈ R𝑑 shares, where each dimension 𝛿𝑖 corresponds to

the trader’s holdings of the 𝑖𝑡ℎ security, then the trader receives a

payment of 𝛿 · 𝜙 (𝑥∗) from the market maker from these holdings

on market closing. After every trade, the vector of all traders’ share

holdings of all securities, called the oustanding shares, determines

the market “state” — this corresponds to the natural parameter

𝜂 for exponential family markets [1]. The market maker prices

securities based on the log-partition function which serves as the

cost function in this market — it charges the trader 𝐶 (𝜂 + 𝛿) −
𝐶 (𝜂) to purchase 𝛿 shares at market state 𝜂. Hence, the traders’

net profit/compensation from these holdings on market closing is

𝛿 · 𝜙 (𝑥) − (𝐶 (𝜂 + 𝛿) − 𝐶 (𝜂)). The instantaneous price vector (the
cost of purchasing an infinitesimal amount of shares) at market

state 𝜂 is given by 𝑑𝐶/𝑑𝜂 which is also equal to the expectation of

the sufficient statistics vector (equivalently, the payoff vector) with

the respect to the distribution induced by 𝜂, E𝜂 [𝜙 (𝑥)].

3 MARKET AND TRADER MODELS

A traditional LMSR market maker’s goal is to update its belief over

the (usually discrete) outcome space of some uncertain real-world
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event; e.g. a Bernoulli random variable 𝑋 ∈ {0, 1} where 1 (resp. 0)
stands for the win of the Democratic (resp. Republican) candidate

in a U.S. presidential race (before it is called). The market price at

any time corresponds to the expected value of this random variable

(the probability 𝑝 of a Democrat winning in the above example).

In our model, the market institution has a different goal: instead

of learning the expected value (a point estimate) of 𝑋 , we are in-
terested in learning a belief distribution over the parameters of the

probability distribution of 𝑋 . Thus, our random variable of interest

has support [0, 1]; we model our uncertainty over this variable via a

beta distribution which is the conjugate prior for the Bernoulli data

distribution [12]. Since the beta distribution is fully described by pa-

rameters 𝛼, 𝛽 > 0, an update to the belief distribution is equivalent

to an update in the two-dimensional (𝛼, 𝛽) parameter space.

Another feature of our model is that, at market closing, the

“true” Bernoulli success probability 𝑝𝑡𝑟𝑢𝑒 is made public. While the

revelation of the outcome is not the same as the revelation of the

specifics of the outcome-generating process, there are scenarios

where we can observe a proxy for the process parameters; the

vote-share of the winning candidate in a binary election can serve

as such a proxy (see, e.g. Chakraborty et al. [6] for a vote-share

prediction market).

3.1 Beta Market Maker

We now specify the design of the beta distribution-based market-

making algorithm for the above prediction task in accordance with

the principles laid down in [1]. The goal of the algorithmic market

maker is to learn an aggregate belief distribution over 𝑝𝑡𝑟𝑢𝑒 ∈ [0, 1]:
• Securities and payoffs. The market offers trade in two securi-

ties whose payoffs are the sufficient statistics computed at the

value 𝑝𝑡𝑟𝑢𝑒 ∈ [0, 1] revealed1 at market termination, i.e. ln𝑝𝑡𝑟𝑢𝑒
and ln(1 − 𝑝𝑡𝑟𝑢𝑒 ).

• Outstanding shares andmarket belief.Themarketmaintains

and continuously displays (for the trading population) the current

outstanding shares 𝜂 = [𝜂1, 𝜂2]𝑇 . This corresponds to the natural
parameters of (and hence fully describes) the market’s current

belief Beta(𝑝;𝛼, 𝛽) as follows: 𝜂1 = 𝛼 − 1, 𝜂2 = 𝛽 − 1.

• Cost function. This corresponds to the beta log-partition func-

tion [29] and is also known to the traders:

𝐶 (𝜂) = ln Γ(𝜂1 + 1) + ln Γ(𝜂2 + 1) − ln Γ(𝜂1 + 𝜂2 + 2).

In particular, the outstanding share vector readily gives us the

market’s current instantaneous prices of the two securities (or their

expected payoffs) as:E𝜂 [ln𝑝] = 𝜓 (𝛼)−𝜓 (𝛼+𝛽) andE𝜂 [ln(1−𝑝)] =
𝜓 (𝛽) −𝜓 (𝛼 + 𝛽), where𝜓 (𝑦) = dΓ (𝑦)/d𝑦

Γ (𝑦) is the digamma function.
We may also infer the expected value of the unknown Bernoulli

parameter as E𝜂 [𝑝] = 𝜂1+1
𝜂1+𝜂2+2 .

3.2 Bayesian Trader Model

In our model, traders are myopic, i.e. on each market entry, they

act as if it is their last chance to interact with the market before

market closing, and risk-neutral, i.e. they trade to optimize their

expectation of their net compensation from the market (perhaps

subject to budget constraints, see Section 3.2.2). Before trading, the

1
For our simulations, we ensure 𝑝𝑡𝑟𝑢𝑒 ∈ (0, 1) to prevent degenerate cases.

trader formulates her own belief about 𝑝 as follows: before each of

her arrivals, a trader privately observes a sample of𝑚 datapoints

drawn independently from the true Bernoulli distribution: 𝑥𝑖 ∼𝑖 .𝑖 .𝑑.
Bernoulli(𝑝𝑡𝑟𝑢𝑒 ) ∀𝑖 ∈ {1, . . . ,𝑚}. The trader is Bayesian: she
uses the market state 𝜂 to define her Bayesian prior belief Beta(𝜂1+
1, 𝜂2 + 1); using her sample, she constructs her Bayesian posterior

belief which is a beta distribution with updated parameters as in

Equations (2). Due to the incentive-compatibility of exponential

family markets [1], the trader’s optimal trade updates the market’s

state to 𝜂𝑛𝑒𝑤 as follows: 𝜂𝑛𝑒𝑤
1

= 𝜂1 +
∑𝑚
𝑖=1 𝑥𝑖 and 𝜂𝑛𝑒𝑤

2
= 𝜂2 +

𝑚 −∑𝑚
𝑖=1 𝑥𝑖 . One immediate observation is that 𝜂1, 𝜂2 increase (in

general, weakly) with each trade under this model; in other words,

traders express their beliefs through purchases only, eliminating

the need for (short-)selling.

3.2.1 Trader Informativeness. We define the informativeness of a

trader simply as her private sample size𝑚 as above. Since these

datapoints are drawn from the true distribution, larger the sample

size, the higher the quality of the posterior. Interestingly, since

the market displays 𝜂 at all times and it is updated in the above

Bayesian manner, the informativeness of the latest trader can be

inferred readily as𝑚 = 𝜂𝑛𝑒𝑤
1

+ 𝜂𝑛𝑒𝑤
2

− (𝜂1 + 𝜂2).

3.2.2 Trader Budget. Until now, we have implicitly assumed that

every trader has an unlimited budget for trading and hence is free

to inject all her information into the market state. But, a trader

may be constrained by a finite budget 𝐵 > 0 to limit her worst-case

exposure in the market. More formally, a budget-limited trader with

privately observed sequence of Bernoulli datapoints 𝑥1, 𝑥2, · · · , 𝑥𝑚
will trade as follows. For a current market state of 𝜂, she chooses

to trade on the posterior induced by the leading sub-sequence

𝑥1, . . . , 𝑥𝑘 , for the largest value of 𝑘 ∈ {1, 2, · · · ,𝑚} such that

max

𝑝

𝐶 ©­«𝜂 +
[
𝑘∑
𝑖=1

𝑥𝑖 , 𝑘 −
𝑘∑
𝑖=1

𝑥𝑖

]𝑇 ª®¬ −𝐶 (𝜂)

−
[
𝑘∑
𝑖=1

𝑥𝑖 , 𝑘 −
𝑘∑
𝑖=1

𝑥𝑖

]
· [ln𝑝, ln(1 − 𝑝)]

}
≤ 𝐵.

In our simulations, we maximize over 𝑝 ∈ [𝜖, 1 − 𝜖] for some small

𝜖 > 0 to exclude the degenerate instances corresponding to sure

events. If the trader returns, she retains the last𝑚 − 𝑘 datapoints

𝑥𝑘+1, 𝑥𝑘+2, · · · , 𝑥𝑚 that she failed to incorporate and collects the

remaining 𝑘 datapoints for the new trade afresh.

4 EXPERIMENTS

4.1 Experimental Setup

We conduct two sets of experiments, Set1 and Set2, on a beta-

Bernoulli market ecosystem (Section 3). The starting market state

is set at 𝜂 = [0, 0]𝑇 (i.e. no outstanding shares) or, equivalently,

𝛼 = 𝛽 = 1 (i.e. a uniform prior distribution over the unknown

Bernoulli parameter).

4.1.1 Set1: Informativeness and Trader Ordering. In Set1, we have

two types of (unlimited-budget) traders with different levels of

informativeness. We aim to compare the average difference in com-

pensation between trader types across multiple instances of the

‘same’ market i.e., with the same initial market state, revealed value
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of 𝑝𝑡𝑟𝑢𝑒 and trader ordering (described below). We report the aver-

age compensations for the two trader types over different revealed

values of 𝑝𝑡𝑟𝑢𝑒 and different orderings.

HI (high informativeness) traders have a private sample size

𝑚 = 5, and LI (low informativeness) traders have 𝑚 = 1. In

each market instance, there are 𝑛 = 500 traders of each type, i.e.

2𝑛 = 1000 traders in total. The revelation at market closure, i.e.

after all 2𝑛 traders have completed trading, has three possibilities

𝑝𝑡𝑟𝑢𝑒 ∈ {0.25, 0.5, 0.75}, determining each trader’s compensation

for that instance. We consider four different orderings of the trader
population with respect to types:

HI First: All 𝑛 HI traders arrive first, then all 𝑛 LI traders.

LI First: All 𝑛 LI traders arrive first, then all 𝑛 HI traders.

Interleaved: LI and HI traders arrive alternately, starting with LI.

Random: A random permutation of all 2𝑛 traders is chosen at the

start of the market and they trade in sequence.

We measure the per-trader average net compensation of HI traders

and the same quantity for LI traders over 10
4
market instances

for a fixed value of 𝑝𝑡𝑟𝑢𝑒 and fixed trader ordering (the instances

differing in each trader’s observed random datapoints).

4.1.2 Set2: Budgets and Trader Ordering. In Set2, we have two

types of traders with the same level of informativeness: those that

are budget-limited (LB) and those with unlimited budget (UB). We

track the growth in budget of LB traders over multiple market
rounds defined as follows. In each round, a new market starts at

𝜂 = [0, 0]𝑇 ; each trader is multi-shot and can re-enter the market

multiple times in a single round until the market in that round

terminates according to a stop criterion (see below). At the start

of each round, the Bernoulli parameter 𝑝𝑡𝑟𝑢𝑒 is drawn from the

uniform distribution 𝑈 [0.05, 0.95]; it governs all traders’ private
samples and is revealed when the round terminates, determining

all payoffs. We track the overall compensation characteristics of

a trader population over a sequence of 𝑁𝑚𝑎𝑥 = 25 rounds. We

repeat these experiments for traders with different starting levels of

limited budget. As in Beygelzimer et al. [5], the fixed population of

traders can be viewed as a panel of experts responding to a series of

different binary forecast questions and having their weights (akin
to trading power/budgets) readjusted by the response aggregator

according to their performance history.

In each simulation over 𝑁𝑚𝑎𝑥 rounds, we have 𝑛 = 5 traders of

either type in the population. On each entry (opportunity to trade)

in any market round, every trader has a private sample of the same

size𝑚 = 5 at her disposal. Each UB trader uses all her𝑚 (fresh)

datapoints and the current market state to determine her posterior

belief, and hence her trade, every time she enters. Thus, a UB trader

acts as a multi-shot version of an HI trader from Set1. Each LB

trader is endowed with an initial budget 𝐵0 ∈ (0,∞) at the start of
round 𝑁 = 1. In our experiments, 𝐵0 ∈ {2, 5, 10}. LB traders possess

potentially different budgets 𝐵𝑁−1 at the start of each round 𝑁

of the market. At her 𝑖th entry in round 𝑁 , an LB trader makes

her budget-constrained trading choice as described in Section 3.2.2

with her “residual” budget 𝐵 = 𝐵𝑖
𝑁−1; 𝐵

1

𝑁−1 = 𝐵𝑁−1 and 𝐵𝑖𝑁−1 for
every 𝑖 > 1 is obtained from 𝐵𝑁−1 by properly accounting for the

cost function-based payments and share holdings (if any) due to all

of the trader’s first 𝑖 − 1 entries in this round. At the end of round

𝑁 , an LB trader’s net compensation from this round is added to

𝐵𝑁−1 to produce her budget 𝐵𝑁 for the start of the next round. We

define trader orderings as follows:

UB First: All 𝑛 UB traders come first, then all 𝑛 LB traders.

LB First: All 𝑛 LB traders come first, then all 𝑛 UB traders.

Interleaved: UB and LB traders alternate, starting with LB.

Random: A random permutation of all 2𝑛 traders is chosen at the

start of every round.

For the first three orderings, we have an arbitrary internal order

within the LB (similarly, UB) sub-population at the start that is

maintained over rounds in each simulation; for all orderings, re-

entries are handled in a round-robin fashion over individual traders.

Each simulation is characterized by a sequence of 𝑁𝑚𝑎𝑥 realized

values of 𝑝𝑡𝑟𝑢𝑒 sampled independently over rounds as well as ran-

dom draws for private samples of each trader. Results are averaged

over 10
3
simulations for each trader ordering and initial budget.

Stop criterion: We terminate a market round either when each
trader reaches a upper bound 𝑘max on the number of opportuni-

ties to trade or when the prices converge (in the following sense),

whichever comes sooner. We split each round into successive blocks

of 10 trader entries each; if 𝜂𝑜𝑙𝑑 and 𝜂𝑛𝑒𝑤 denote respectively the

outstanding shares vector before and after such a block, we track

the Euclidean distance between the corresponding market prices


E𝜂𝑛𝑒𝑤 [[ln𝑝, ln(1 − 𝑝)]𝑇 ] − E𝜂𝑜𝑙𝑑 [[ln𝑝, ln(1 − 𝑝)]𝑇 ]




2

; if this dif-

ference is at most a small 𝜀 > 0, we deem the market prices to have

converged. In our experiments, we choose 𝑘max = 60 and 𝜀 = 0.01.

4.2 Results

4.2.1 Set1. We will first look at the evolution and convergence

of the market and then at measured trader compensation charac-

teristics. We omit results for 𝑝𝑡𝑟𝑢𝑒 = 0.75 as they mirror those

for 𝑝𝑡𝑟𝑢𝑒 = 0.25 due to symmetry. Since our market maintains a

complete beta probability density over the random variable 𝑝 after

every trade (instead of a point estimate), we can assess its aggrega-

tion quality by how well it concentrates probability around 𝑝𝑡𝑟𝑢𝑒 .

Figure 1 depicts the market’s (averaged) belief after 100 trades, 500

trades (mid-point of a market’s lifetime) and 1000 trades (market

termination) for each of our trader orderings. We see the (aver-

aged) posterior belief converging in expectation to 𝑝𝑡𝑟𝑢𝑒 as early as

100 trades regardless of trader ordering! For instance, even for LI

First which has the slowest rate of information injection by design,

the average (𝛼, 𝛽) parameters after 100 trades for 𝑝𝑡𝑟𝑢𝑒 = 0.25 are

(26.01, 75.99) with respective standard errors (0.04, 0.04), and the

(symmetrical bell-shaped) beta distribution corresponding to the

above average parameters has an expectation of 0.2550. Over subse-

quent trades, the belief becomes progressively more peaked at 𝑝𝑡𝑟𝑢𝑒 .

After 500 trades, the (averaged) beta distribution for LI First con-

centrates over 99% of its probability in the interval 0.2509±0.05; the
corresponding intervals are slightly tighter for the other orderings.

The speeds of both convergence in expectation and concentration

around the mean are understandably the highest for HI First, the

lowest for LI First, and intermediate and comparable for Inter-

leaved and Random. After 1000 trades, the distributions for the

same 𝑝𝑡𝑟𝑢𝑒 are virtually indistinguishable for all orderings, as ex-

pected from our design. For 𝑝𝑡𝑟𝑢𝑒 = 0.5, the expectation of the

market’s starting belief 𝑈 [0, 1] is 0.5 which already equals 𝑝𝑡𝑟𝑢𝑒 ;
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Figure 1: Posterior distribution (probability density) induced by outstanding shares averaged over 10
4
simulations after 100,

500, and 1000 trades, for 𝑝𝑡𝑟𝑢𝑒 ∈ {0.25, 0.5} and all 4 trader orderings in Set1. The support is [0, 1] but we exclude the thin tails

for visual clarity.

however, the market still performs the aggregation function of pro-

gressively reducing uncertainty about the (correct) mean (although

the peak at market closing is not as sharp as that for 𝑝𝑡𝑟𝑢𝑒 = 0.25).

𝑝𝑡𝑟𝑢𝑒 Ordering 10
3× (Avg HI) 10

3× (Avg LI)

0.25

HI First 6.65 ± 0.03 0.19 ± 0.02

LI First 1.77 ± 0.04 5.05 ± 0.03
Interleaved 5.55 ± 0.05 1.31 ± 0.04

Random 5.60 ± 0.05 1.22 ± 0.04

0.50

HI First 6.39 ± 0.03 0.17 ± 0.02

LI First 1.77 ± 0.04 4.79 ± 0.03
Interleaved 5.49 ± 0.04 1.04 ± 0.04

Random 5.48 ± 0.04 1.07 ± 0.04

Table 1: Net compensations of HI and LI traders, averaged

over all traders of respective types for each simulation, then

averaged over 10
4
simulations (with 95% confidence bounds),

for 𝑝𝑡𝑟𝑢𝑒 ∈ {0.25, 0.5, 0.75} and all 4 trader orderings in Set1.

Table 1 shows the expected per-trader average compensation for

each trader type (HI, LI) estimated by averaging over 10
4
market

instances for each of 2 × 4 experimental conditions. It is note-

worthy that the numbers are comparable for the (systematically)

Interleaved and (uniformly) Random orderings. But the salient

takeaway is that, for every 𝑝𝑡𝑟𝑢𝑒 considered, HI traders get less

compensation on average than LI traders when LI traders arrive

first; interleaving, even with a leading LI trader, does not have this

effect. Figure 1 offers a qualitative explanation of this phenomenon:

even with the low information injection rate of LI First, the mar-

ket gets “saturated" with information long before (∼ 100 trades)

all LI traders have completed their trades (500 trades); subsequent

trades (by HI traders) produce minimal marginal improvement to

aggregation quality, hence these traders tend to be compensated

less (regardless of the absolute informational content of their trade).

The significantly large difference in compensation is still surprising!

Does the LI first ordering always result in a higher (expected

per-trader average) compensation for LI traders than for HI traders,

regardless of the number of traders 2𝑛 and the value of 𝑝𝑡𝑟𝑢𝑒?

To answer this question, we derived analytic expressions for the

expected per-trader average compensations of LI traders (denoted

by 𝑅LI𝑛 ) and HI traders (denoted by 𝑅HI𝑛 ) in an LI first sequence

as a function of 𝑛 (the number of traders of each type), 𝑚 (HI
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Figure 2: Evolution ofmarket belief (top to bottom) in round

25 of the worst case (Δ𝑓 ≈ 0.766) for LB First ordering and

𝐵0 = 10.

informativeness), and 𝑝𝑡𝑟𝑢𝑒 . This expectation is with respect to

the joint distribution of all traders’ (independent) private samples.

We found by direct calculation that, for𝑚 = 5 and each 𝑝𝑡𝑟𝑢𝑒 ∈
[0.05, 0.10, 0.15, . . . , 0.95], there exists a value of 𝑛 ∈ {1, 2, . . . },
denoted by 𝑛∗, such that 𝑅HI𝑛 ≥ 𝑅LI𝑛 for every 𝑛 < 𝑛∗ and 𝑅HI𝑛 < 𝑅LI𝑛
for every 𝑛 ≥ 𝑛∗. Moreover, 𝑛∗ increases steadily with 𝑝𝑡𝑟𝑢𝑒 up

to 𝑝𝑡𝑟𝑢𝑒 = 0.5 and then decreases symmetrically, with 𝑛∗ = 22 for

𝑝𝑡𝑟𝑢𝑒 = 0.5 (peak) and 𝑛∗ = 15 for 𝑝𝑡𝑟𝑢𝑒 ∈ {0.25, 0.75}. We can thus

conclude that there exist small values of 𝑛 for which HI traders can

expect to sustain a higher compensation on average than LI traders

even if the former appear later in the sequence; however, for large

enough values of 𝑛 (e.g. 𝑛 = 500 in our experiments), early arrival

always dominates informativeness in this regard.

4.2.2 Trader Order and Budgets. As for Set1, we start with qual-

itative results on aggregation. We measure the aggregation effi-

cacy of a market instance (each round in each simulation) by Δ𝑓 ,

the Euclidean distance between the final expected sufficient statis-

tics of the market [E𝜂 [ln𝑝],E𝜂 [ln(1 − 𝑝)]]𝑇 and the correspond-

ing vector induced by the revealed Bernoulli parameter 𝑝𝑡𝑟𝑢𝑒 , i.e.

[ln(𝑝𝑡𝑟𝑢𝑒 ), ln(1 − 𝑝𝑡𝑟𝑢𝑒 )]𝑇 . Values of Δ𝑓 (lower is better) that we

Figure 3: Final market belief in round 25 of the best case

(Δ𝑓 ≈ 0.001) for LB First ordering and 𝐵0 = 10.

compute over all instances in our experiment suggest that the mar-

ket is a good aggregator on average. For example, the average

value of Δ𝑓 for round 25 (the round in which LB traders are least

constrained by budget) over all 10
3
simulations for LB First and

𝐵0 = 10 is 0.099; for reference, the Euclidean distance between the

above sufficient statistics vectors evaluated at the extreme values

of the support of 𝑝𝑡𝑟𝑢𝑒 , i.e. {0.05, 0.95}, is 4.16; that from either

extreme to 𝑝 = 0.5 is 2.39.

However, we will now discuss outliers revealed by the distribu-

tion of Δ𝑓 across instances (deferring more detailed statistics on

Δ𝑓 to the full version). We found that, for 𝐵0 = 10 and the LB First

ordering, the highest and lowest values of Δ𝑓 in round 25 across

al 10
3
simulations are approximately 0.766 and 0.001 respectively;

we name the corresponding market instances the worst case and
the best case respectively. Figure 2 shows select snapshots of the
market’s evolving belief in the worst case. The market continually

shifts its probability density in the correct direction but ends up

concentrating the probability around an incorrect mean 𝑝∗ that is
close to but more extreme than 𝑝𝑡𝑟𝑢𝑒 (𝑝

∗ = 𝑝𝑡𝑟𝑢𝑒 − 0.035). Contrast

this with Figure 3 which depicts the final market belief in the best

case where 𝑝𝑡𝑟𝑢𝑒 is close to 0.5. This suggests that the market under

our budget constraints performs as a better aggregrator for less

certain events, i.e. when 𝑝𝑡𝑟𝑢𝑒 is safely distant from the extremes

of the support [0.05, 0.95].
We now come to the evolution of the budget of LB traders as

a result of augmentation of the initial budget for each new round

with compensation earned in the previous round. As seen in Figure

4, LB traders are able to grow their budget over successive rounds,

as expected. The earlier the LB traders arrive, the higher is the

rate of this growth; the growth (on average) appears convex in

general and virtually linear for higher values of 𝐵0 considered. One

observation worth mentioning is that Interleaved significantly

dominates Random in terms of growth rate for all values of 𝐵0
considered. Perhaps more interestingly, the rate of growth displays

a non-monotonic dependence on the size of the initial budget —

with 𝐵0 = 2, 5, 10, the budget after round 25 under LB First ordering

is approximately 1.85, 2, and 1.6 times its initial value (on average).
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(a) 𝐵0 = 2

(b) 𝐵0 = 5

(c) 𝐵0 = 10

Figure 4: Change in budget of LB traders with an initial bud-

get of 𝐵0 over rounds 1 − 25, averaged over 10
3
simulations

for 𝑝𝑡𝑟𝑢𝑒 ∼ 𝑈 [0.05, 0.95] and all 4 trader orderings.

However, averaging over all LB traders obscures the impact of the

internal order among them within each round on the enhancement

of their trading power from one round to the next. To gauge this

impact, wemeasured the number of datapoints that each LB trader is

able to incorporate into her trading decision (owing to the constraint

in Section 3.2.2) over successive rounds. In the left and right panels

of Figure 5, we show this number, averaged over all 10
3
simulations,

for the first and last LB traders (in terms of the round-robin sequence

of market entries) respectively, all with an initial budget of 10,

for three representative market rounds under LB First and UB

First; results for other experimental conditions are qualitatively

similar and are omitted. Note that the average number of market

entries of a trader over all rounds in all simulations is in the range

[10.9, 11.8] over all traders, the number of re-entries being almost

always determined by the 𝜀-based and not the 𝑘max-based stop

criterion (Section 4.2.2) — we cut off the horizontal axis at 10.

The takeaways from Figure 5 are as follows. The number of

datapoints used per entry (weakly) decreases with re-entries within

a round; this is understandable since the residual budget of each

trader, and hence the amount of information she is able to trade on,

(weakly) decreases until market closure at the end of the round. Of

course, all LB traders are able to trade on more information in later

rounds, in particular round 25, than in the initial rounds due to

their increased start-of-the-round budget. However, while the first

LB trader can use all her𝑚 = 5 datapoints at (or possibly before)

round 10 under LB First, the average number of datapoints that

the last LB trader manages to use remains virtually fixed at around

4.5 which is strictly smaller than𝑚 = 5 — this situation appears

comparable to the less favorable UB First ordering.

5 CONCLUSION AND FUTUREWORK

We presented a study on the effects of arrival time on trader com-

pensation under a new market ecosystem designed to capture the

aggregate belief of a trader population about a random outcome-

generating process. While trader belief updates follow a previously

studied Bayesian process, we modeled the difference in trader in-
formativeness in a novel way and studied its interplay with other

design parameters. When traders have differing levels of informa-

tiveness, we systemically gauged the extent to which earlier arrival

can lead to larger average compensation for traders with lower
informativeness. When traders have varying levels of initial budget,
we showed that those who trade earlier become effectively budget-
unlimited within a few market rounds whereas those who arrive

later are always constrained by their budgets, even after several

rounds. Thus our findings strongly indicate that any systematic

study of inherent trader attributes in prediction markets must ap-

propriately control for the confounding effects of trader ordering.

One direction we are actively pursuing is to establish the the-

oretical underpinnings of all our numerical results (similar to the

last paragraph of Section 4.2.1). Further experimental assessment

of design and modeling issues is also on our agenda. For example,

budget-limited traders could strategize over arrival time or could

choose other ways to incorporate their available information into

the market — perhaps by choosing the ‘best’ subset of datapoints

that their budget allows, or by solving a constrained optimization

problem as in Devanur et al. [11]. We believe that our framework

lays the foundation for further investigations along these lines.
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Figure 5: Average number of datapoints used to make a budget-constrained trading decision by the first (left) and last

(right) trader in the sub-sequence of multi-shot LB traders within each of rounds 1,10, and 25 over 10
3
simulations (𝑝𝑡𝑟𝑢𝑒 ∼

Uniform[0.05, 0.95]) with 𝐵0 = 10 for two different trader orderings.
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